Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Intervalo de año de publicación
1.
Pathogens ; 13(3)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38535570

RESUMEN

Xylella fastidiosa (Xf) is a global bacterial threat for a diversity of plants, including olive trees. However, current understanding of host responses upon Xf-infection is limited to allow early disease prediction, diagnosis, and sustainable strategies for breeding on plant tolerance. Recently, we identified a major complex trait for early de novo programming, named CoV-MAC-TED, by comparing early transcriptome data during plant cell survival with SARS-CoV-2-infected human cells. This trait linked ROS/RNS balancing during first hours of stress perception with increased aerobic fermentation connected to alpha-tubulin-based cell restructuration and control of cell cycle progression. Furthermore, our group had advanced concepts and strategies for breeding on plant holobionts. Here, we studied tolerance against Xf-infection by applying a CoV-MAC-TED-related gene set to (1) progress proof-of-principles, (2) highlight the importance of individual host responses for knowledge gain, (3) benefit sustainable production of Xf-threatened olive, (4) stimulate new thinking on principle roles of secondary metabolite synthesis and microbiota for system equilibration and, (5) advance functional marker development for resilience prediction including tolerance to Xf-infections. We performed hypothesis-driven complex analyses in an open access transcriptome of primary target xylem tissues of naturally Xf-infected olive trees of the Xf-tolerant cv. Leccino and the Xf-susceptible cv. Ogliarola. The results indicated that cyanide-mediated equilibration of oxygen-dependent respiration and carbon-stress alleviation by the help of increased glycolysis-driven aerobic fermentation paths and phenolic metabolism associate to tolerance against Xf. Furthermore, enhanced alternative oxidase (AOX) transcript levels through transcription Gleichschaltung linked to quinic acid synthesis appeared as promising trait for functional marker development. Moreover, the results support the idea that fungal endophytes strengthen Xf-susceptible genotypes, which lack efficient AOX functionality. Overall, this proof-of-principles approach supports the idea that efficient regulation of the multi-functional AOX gene family can assist selection on multiple-resilience, which integrates Xf-tolerance, and stimulates future validation across diverse systems.

2.
Front Plant Sci ; 12: 686274, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659277

RESUMEN

Plants respond to environmental cues via adaptive cell reprogramming that can affect whole plant and ecosystem functionality. Microbiota constitutes part of the inner and outer environment of the plant. This Umwelt underlies steady dynamics, due to complex local and global biotic and abiotic changes. Hence, adaptive plant holobiont responses are crucial for continuous metabolic adjustment at the systems level. Plants require oxygen-dependent respiration for energy-dependent adaptive morphology, such as germination, root and shoot growth, and formation of adventitious, clonal, and reproductive organs, fruits, and seeds. Fermentative paths can help in acclimation and, to our view, the role of alternative oxidase (AOX) in coordinating complex metabolic and physiological adjustments is underestimated. Cellular levels of sucrose are an important sensor of environmental stress. We explored the role of exogenous sucrose and its interplay with AOX during early seed germination. We found that sucrose-dependent initiation of fermentation during the first 12 h after imbibition (HAI) was beneficial to germination. However, parallel upregulated AOX expression was essential to control negative effects by prolonged sucrose treatment. Early downregulated AOX activity until 12 HAI improved germination efficiency in the absence of sucrose but suppressed early germination in its presence. The results also suggest that seeds inoculated with arbuscular mycorrhizal fungi (AMF) can buffer sucrose stress during germination to restore normal respiration more efficiently. Following this approach, we propose a simple method to identify organic seeds and low-cost on-farm perspectives for early identifying disease tolerance, predicting plant holobiont behavior, and improving germination. Furthermore, the research strengthens the view that AOX can serve as a powerful functional marker source for seed hologenomes.

3.
Front Plant Sci ; 12: 697318, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34490002

RESUMEN

Plants are a remarkable source of high-value specialized metabolites having significant physiological and ecological functions. Genes responsible for synthesizing specialized metabolites are often clustered together for a coordinated expression, which is commonly observed in bacteria and filamentous fungi. Similar to prokaryotic gene clustering, plants do have gene clusters encoding enzymes involved in the biosynthesis of specialized metabolites. More than 20 gene clusters involved in the biosynthesis of diverse metabolites have been identified across the plant kingdom. Recent studies demonstrate that gene clusters are evolved through gene duplications and neofunctionalization of primary metabolic pathway genes. Often, these clusters are tightly regulated at nucleosome level. The prevalence of gene clusters related to specialized metabolites offers an attractive possibility of an untapped source of highly useful biomolecules. Accordingly, the identification and functional characterization of novel biosynthetic pathways in plants need to be worked out. In this review, we summarize insights into the evolution of gene clusters and discuss the organization and importance of specific gene clusters in the biosynthesis of specialized metabolites. Regulatory mechanisms which operate in some of the important gene clusters have also been briefly described. Finally, we highlight the importance of gene clusters to develop future metabolic engineering or synthetic biology strategies for the heterologous production of novel metabolites.

4.
Front Immunol ; 12: 673723, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211468

RESUMEN

Reprogramming of primary virus-infected cells is the critical step that turns viral attacks harmful to humans by initiating super-spreading at cell, organism and population levels. To develop early anti-viral therapies and proactive administration, it is important to understand the very first steps of this process. Plant somatic embryogenesis (SE) is the earliest and most studied model for de novo programming upon severe stress that, in contrast to virus attacks, promotes individual cell and organism survival. We argued that transcript level profiles of target genes established from in vitro SE induction as reference compared to virus-induced profiles can identify differential virus traits that link to harmful reprogramming. To validate this hypothesis, we selected a standard set of genes named 'ReprogVirus'. This approach was recently applied and published. It resulted in identifying 'CoV-MAC-TED', a complex trait that is promising to support combating SARS-CoV-2-induced cell reprogramming in primary infected nose and mouth cells. In this perspective, we aim to explain the rationale of our scientific approach. We are highlighting relevant background knowledge on SE, emphasize the role of alternative oxidase in plant reprogramming and resilience as a learning tool for designing human virus-defense strategies and, present the list of selected genes. As an outlook, we announce wider data collection in a 'ReprogVirus Platform' to support anti-viral strategy design through common efforts.


Asunto(s)
COVID-19/prevención & control , Técnicas de Reprogramación Celular/métodos , Técnicas de Embriogénesis Somática de Plantas/métodos , SARS-CoV-2/genética , COVID-19/patología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Humanos , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Desarrollo de la Planta/genética , Proteínas de Plantas/metabolismo , Plantas/embriología , Plantas/genética , Especies Reactivas de Oxígeno/metabolismo
5.
Front Immunol ; 12: 673692, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305903

RESUMEN

In a perspective entitled 'From plant survival under severe stress to anti-viral human defense' we raised and justified the hypothesis that transcript level profiles of justified target genes established from in vitro somatic embryogenesis (SE) induction in plants as a reference compared to virus-induced profiles can identify differential virus signatures that link to harmful reprogramming. A standard profile of selected genes named 'ReprogVirus' was proposed for in vitro-scanning of early virus-induced reprogramming in critical primary infected cells/tissues as target trait. For data collection, the 'ReprogVirus platform' was initiated. This initiative aims to identify in a common effort across scientific boundaries critical virus footprints from diverse virus origins and variants as a basis for anti-viral strategy design. This approach is open for validation and extension. In the present study, we initiated validation by experimental transcriptome data available in public domain combined with advancing plant wet lab research. We compared plant-adapted transcriptomes according to 'RegroVirus' complemented by alternative oxidase (AOX) genes during de novo programming under SE-inducing conditions with in vitro corona virus-induced transcriptome profiles. This approach enabled identifying a major complex trait for early de novo programming during SARS-CoV-2 infection, called 'CoV-MAC-TED'. It consists of unbalanced ROS/RNS levels, which are connected to increased aerobic fermentation that links to alpha-tubulin-based cell restructuration and progression of cell cycle. We conclude that anti-viral/anti-SARS-CoV-2 strategies need to rigorously target 'CoV-MAC-TED' in primary infected nose and mouth cells through prophylactic and very early therapeutic strategies. We also discuss potential strategies in the view of the beneficial role of AOX for resilient behavior in plants. Furthermore, following the general observation that ROS/RNS equilibration/redox homeostasis is of utmost importance at the very beginning of viral infection, we highlight that 'de-stressing' disease and social handling should be seen as essential part of anti-viral/anti-SARS-CoV-2 strategies.


Asunto(s)
Reprogramación Celular/genética , Herencia Multifactorial/genética , SARS-CoV-2/patogenicidad , Acetilserotonina O-Metiltransferasa/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Ciclo Celular/genética , Bases de Datos Genéticas , Daucus carota/genética , Daucus carota/crecimiento & desarrollo , Fermentación , Perfilación de la Expresión Génica , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tubulina (Proteína)/genética , Virus/patogenicidad
6.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-447491

RESUMEN

In a perspective entitled From plant survival under severe stress to anti-viral human defense we raised and justified the hypothesis that transcript level profiles of justified target genes established from in vitro somatic embryogenesis (SE) induction in plants as a reference compared to virus-induced profiles can identify differential virus signatures that link to harmful reprogramming. A standard profile of selected genes named ReprogVirus was proposed for in vitro-scanning of early virus-induced reprogramming in critical primary infected cells/tissues as target trait. For data collection, the ReprogVirus platform was initiated. This initiative aims to identify in a common effort across scientific boundaries critical virus footprints from diverse virus origins and variants as a basis for anti-viral strategy design. This approach is open for validation and extension. In the present study, we initiated validation by experimental transcriptome data available in public domain combined with advancing plant wet lab research. We compared plant-adapted transcriptomes according to RegroVirus complemented by alternative oxidase (AOX) genes during de novo programming under SE-inducing conditions with in vitro corona virus-induced transcriptome profiles. This approach enabled identifying a major complex trait for early de novo programming during SARS-CoV-2 infection, called CoV-MAC-TED. It consists of unbalanced ROS/RNS levels, which are connected to increased aerobic fermentation that links to alpha-tubulin-based cell restructuration and progression of cell cycle. We conclude that anti-viral/anti-SARS-CoV-2 strategies need to rigorously target CoV-MAC-TED in primary infected nose and mouth cells through prophylactic and very early therapeutic strategies. We also discuss potential strategies in the view of the beneficial role of AOX for resilient behavior in plants. Furthermore, following the general observation that ROS/RNS equilibration/redox homeostasis is of utmost importance at the very beginning of viral infection, we highlight that de-stressing disease and social handling should be seen as essential part of anti-viral/anti-SARS-CoV-2 strategies.

7.
Front Plant Sci ; 10: 1134, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31611888

RESUMEN

Somatic embryogenesis (SE) is the most striking and prominent example of plant plasticity upon severe stress. Inducing immature carrot seeds perform SE as substitute to germination by auxin treatment can be seen as switch between stress levels associated to morphophysiological plasticity. This experimental system is highly powerful to explore stress response factors that mediate the metabolic switch between cell and tissue identities. Developmental plasticity per se is an emerging trait for in vitro systems and crop improvement. It is supposed to underlie multi-stress tolerance. High plasticity can protect plants throughout life cycles against variable abiotic and biotic conditions. We provide proof of concepts for the existing hypothesis that alternative oxidase (AOX) can be relevant for developmental plasticity and be associated to yield stability. Our perspective on AOX as relevant coordinator of cell reprogramming is supported by real-time polymerase chain reaction (PCR) analyses and gross metabolism data from calorespirometry complemented by SHAM-inhibitor studies on primed, elevated partial pressure of oxygen (EPPO)-stressed, and endophyte-treated seeds. In silico studies on public experimental data from diverse species strengthen generality of our insights. Finally, we highlight ready-to-use concepts for plant selection and optimizing in vivo and in vitro propagation that do not require further details on molecular physiology and metabolism. This is demonstrated by applying our research & technology concepts to pea genotypes with differential yield performance in multilocation fields and chickpea types known for differential robustness in the field. By using these concepts and tools appropriately, also other marker candidates than AOX and complex genomics data can be efficiently validated for prebreeding and seed vigor prediction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...